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PREFACE 

Part of the Project RAND research program consists of 

basic supporting studies in mathematics.  This Memorandum 

presents a method for the computational solution of a 

type of differential equation that frequently arises in 

the construction of mathematical models in a variety of 

fields, including engineering and biophysics. 



SUMMARY 

Functional differential equations of the form 

(1) u'Ct) - g(t,u(t),u(h(t))), 

and, more generally, of the form 

(2) u'Ct) - g(t,u(t),u(h(u,t))), 

arise in the construction of realistic models in a number 

of fields, ranging from electromagnetic theory and control 

theory to respiratory theory and neurophysiology.  The 

analytic aspects are quite complex, and numerical solution 

is anything but routine, even with the aid of a digital 

computer.  In this paper, we wish to extend a method for 

the conp utational treatment of differential—difference 

equations to cover equations of the form given in (1). 

Equations of the type appearing in (2) can then be 

treated by means of successive approximations. 
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ON THE COMPUTATIONAL SOLUTION OF A CLASS OF 
FUNCTIONAL DIFFERENTIAL EQUATIONS 

I.     INTRODUCTION 

Functional differential equations of the form 

(1.1) u'(t)  - g(t,u(t),u(h(t))), 

and,  more generally,  of  the  form 

(1.2) u^t)  - g(t,u(t),u(h(u,t))), 

arise in the construction cf realistic models in a number 

of fields, ranging from electromagnetic theory and control 

theory to respiratory theory and neurophysiology.  The 

analytic aspects are quite complex (see [1], [2]), and 

numerical solution is anything but routine, even with the 

aid of a digital computer.  In this paper, we wish to 

extend a method given in [3,4,5] for the computational 

treatment of differential-difference equations, to cover 

equations of the form given in (1.1),  Equations of the 

type appearing in (1.2) can then be treated by means of 

successive approximations. 

1,     THE EQUATION u^t) - g(u(t) ,u(h(t) )) 

Let us suppose that h(t) < t,  for t 2: 0^  so that 

the future is determined by the past.  An objection to 
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uslng straightforward techniques for the numerical 

solution of 

(2.1) u'Ct) - g(u(t),u(h(t))), 

with appropriate initial conditions, lies in the amount 

of rapid-access storage required for large t.  If this 

equation is merely one of a number of equations which 

arise in the description of a large, complex system, we 

cannot afford to use up rapid-access storage. 

Let us suppose that h'Ct)   0  for t _ 0,  and 

let the inverse function h  (t)  be denoted by H(t), 

Suppose further that u(t)  is known in some initial 

interval  [0,ti]» where t, ■ H(0),  and let the sequence 

{t }  be defined recursively by 

(2.2) tn - H(tn_1), n - 2,3,.... 

Let H^(t)  denote the n-th iterate of H(t), 

H^ - H(H^n""L^),  n = 2,3,....  We observe that the 

function H(t)  maps the interval  [t  ijt ]  onto 

[t ,t .,]  in one—to—one fashion,  n = 1,2,...,  and 

H(k)(t:)  maps  [t^.tj onto  [ Vl+k^n+k'' 

Consider the function 

(2.3)    un(s) = u(M
(n)(s)),  n = 0,1,2,..., 
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where s Is restricted to the interval  [0,t,], and 

H^(s) ■ s.  Thus the values of un(s), for 0 < s < t^, 

are the values of u(t)  for t < t < tn+1. We have 

(2.4)    u^Cs) - l4H(n)(s)]u»(H(n)(s)), 

and the derivative of H^n'(s)  can easily be evaluated 

recursively by the formula 

(2.5)    ^ H(n>(s) - H'(H<n-1>(s)) ^ H^1>(s). 

Now we set t « H^n'(s),  where 0 < s < t^  Then 

from the equation in (2.1) we get 

(2.6)    u'Ol^Cs)) - g(u(H(n)(s)),u(H(n^1)(s))} 

g(un(s),un_1(s)>, n - 1,2,.... 

Referring to (2.4), we see that (2.6) may be written 

(2.7)    u'(s) - (4 H(n)(s)]g(u (s),u ,(s)),  n - 1,2,.... n 

Thus (2.1) has been replaced by a system of ordinary 

differential equations where s  now ranges over a fixed 

interval  [0,t,].  This is important from the computational 

point of view. 



3^ NUMERICAL SOLUTION 

The computational solution of this system is not 

routine, since we do not possess the requisite initial 

values  [u (0)]  for n  2. Consequently, we proceed as 

in [3].  The equation 

(3.1) u{(s) = H,(s)g(u1(s),u0(s)),  u^O) = UQC^) 

gives us the value u«(0) = u, (t-.).  We now consider the 

simultaneous equations 

(3.2) u|(s) = H,(s)g(u1(s),u0(s)),  u^O) = ^(t^. 

u'(s) = [H(2)(s)],g(u2(s),u1(s)), u2(0) = u^t^ 

and  solve  these  to  obtain    u^(0)  = u«(t,). 

Continuing   in   this  way,   we  require  no storage of 

functions,   at   the  expense of being  required  to  solve 

successively  larger  systems of  equations. 

4.     ANOTHER METHOD 

Reduction of  equation   (2.1)   to   a system of ordinary 

differential equations  over a fixed   interval can also be 

achieved by  introducing new independent  and dependent 

variables in a manner attributed originally to Laplace 

(see   [1],  page 84).     It  is also closely  related  to  some 
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ideas of Abel concerning the iteration of functions.  We 

begin by introducing a new independent variable x by 

the equations 

(4.1) t = p(x), h(t) = p(x - F), 

where     ?     is  an arbitrary  fixed constant.     The  function 

p    must be chosen  so  that 

(4.2) h(p(x))  = p(x - ?). 

or 

(4.3) p(x)   = H(p(x - ?)), 

and  should be  monotone and continuous,   in order  that   the 

relation    t  = p(x)     be solvable  for    x  = p~  (t).     We note 

that  if    p     is  any monotone  function on    0    ' x <   ^     with 

the  property   that 

(4.4) h(p(F))   = p(0), 

then because     H     is  continuous  and monotone,   it will 

follow  that    p(x)     is continuous  and monotone on     0 <  x «^ 2', 

and by   iteration of   (4.3),   continuous  and monotone  on 

0 < x. 



Let 

(4.5) v(x)   - u(t)  - u(p(x)). 

It then follows   that 

v'Cx)   - u,(t)p,(x)  « u'(p(x))p,(x). 

Since (2.1) yields 

u,(p(x)) - g[u(p(x)),u(h(p(x)))} 

- g[u(p(x)),u(p(x - ?))), 

and since u(p(x)) ■ v(x)  and u(p(x — ?)) ■ v(x — £,), 

we see that 

(4.6)    v'W - p,(x)g(v(x),v(x - O). 

Thus the introduction of new independent and dependent 

variables x and v by means of (4,1) and (4.5) leads 

to the replacement of (2.1) by the pair of equations 

(4.2) and (4.6), one of which is a difference equation 

and the other a differential—difference equation, both 

with a fixed lag  f.  It is not hard to see that if p 

and v are continuous solutions of (4.2) and (4.6), then 

(4.1) and (4.5) define a solution u(t) of (2.1). 
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The  equations   (4.2)   and   (4.6)  can now be  reduced to 

a system of  equations on  the   interval     [0,1]     by  the 

technique of   [4].     That  is,   we  define 

(4.7) p   (x)   - p(x + n?). n 

(0 < x <  P;  n « 0,1,...) 

v   (x)  " v(x + n?). n 

Here by     pn(x)     and    v0(x)     we   accordingly mean  the 

initial values  of    p(x)     and    v(x)    on    0 < x <   '•     With 

these definitions,   equations   (4.3)  and  (4.6)   finally take 

the   form 

(4.8) pn(x)   - H(pn_I(x)),     (0 < x <   p;  n  -  1,2,...) 

(4.9) v^x)  = pi;(x)g(vn(x),vn_1(x)). 

The  solution of   (4.8)  can now be carried out by  iteration, 

and  the  solution of   (4.9)   by  the  method sketched   in 

Sec.   3.     The   function    p^x)     can be evaluated recursively 

from  the   formula 

p^x)   - H,(pn^1(x))pi;^1(x). 

The  similarity of   (4.8)   to   the relation 

H(n)(s)   = H(H(n~1)(s)),     and of   (4.9)   to   (2.7),   is 
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apparent.  Indeed, tf we choose p0 so that PQOO ■ x, 

then from (4.4) we obtain h(P) - 0, and P Is the same 

as the  t,  defined In Sec. 2.  Moreover, we then obtain 

p (x) - H^  (x),  and since 

vn(x) - v(x + n?) - u(p(x + n?)) - u(pn(x)). 

the function v (x)  is identical to the function u (s) nv  ' nv  ' 

of  Sec.   2. 

On   the  other hand,   the   formulation   in   this   section 

seemingly  allows  some  extra   latitude,   since   the  choice of 

p0(x)     is   largely arbitrary.     In practice,   however,   it  is 

unlikely   that   any advantage  can be derived  from  this. 

5.     AN EXAMPLE 

We wish to consider a particular case, in order to 

illustrate a possible pitfall in the application of the 

techniques given above.  Suppose the equation in question 

is 

(5.1)    u'(t) - g(u(t),u(^- 1)), 

so that  h(t) - t/2 - 1,  H(s) - 2(s + 1).  Then  ^ - 2, 

t« "6, t-, - 14,  and so on, and 

H(n)(s) - 2ns + t . N n 
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Equation (2.7) becomes 

u^s) - 2ng(un(s),un^1(s)). 

Now suppose we carry out the solution of this system, 

determining u (s)  at equally spaced points 

s « 0,4,...,Nfi, where  Nfi - t,.  Referring to (2.3), we 

see that we obtain in this way the values of u(t) at 

the points  t ,t + 2n6,t + 2n2ö,...,t ., .  Since the r       n n       n      '   ' n+1 

length of the interval  (t ,t .,]  doubles when n 

increases by one, whereas the number of points at which 

we know u(t)  is unchanged, it is evident that our 

computed values provide less and less information about 

u(t)  the larger  t becomes. 

Two ways of overcoming this difficulty suggest 

themselves.  One is simply to use a very small value of 

6  in the first place—but this exacts a penalty in 

storage and computing time.  The second is to combine the 

above scheme with an interpolation process.  For the 

equation in (5.1), this could take the following form. 

Starting with u0(s),  tabulated at  0,fi,..,,Nft,  solve 

the differential equation to obtain u^s),  and 

consequently u(t)  at  N  points on the interval  [t,,^] 

By interpolation, subtabulate u(t)  at N additional 

points.  This yields  u,(s)  at 2N points, say 

s « 0,6/2,6,36/2,...,N6.  Continuing in this way, we 
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obtain u(t) at equally spaced points over any interval. 

It seems likely that the insertion of an interpolation at 

each step of the process, or whenever the computed points 

become too thinly distributed, will improve the accuracy 

of the results. 

In many applications of interest, fortunately, 

h(t) is such that h(t) ~ t ~ b, b a constant, as 

t -• CD .  Hence, the foregoing difficulty does not arise. 

6.  SUCCESSIVE APPROXIMATIONS 

A minor modification enables us to treat the more 

general equation of (1.1).  The equation of (1.2), which 

arises from some realistic models of respiratory 

processes, can be treated by means of successive 

approximations. 
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